- Home
- Standard 12
- Mathematics
If matrix $A\, = \,\left[ {\begin{array}{*{20}{c}}
1&{3k + \frac{1}{3}} \\
0&1
\end{array}} \right]$, then the value of $\mathop \Pi \limits_{k = 1}^{36} \,\left[ {\begin{array}{*{20}{c}}
1&{3k + \frac{1}{3}} \\
0&1
\end{array}} \right]$ is equal to :-
$\left[ {\begin{array}{*{20}{c}}
1&{1998} \\
0&1
\end{array}} \right]$
$\left[ {\begin{array}{*{20}{c}}
1&{2010} \\
0&1
\end{array}} \right]$
$\left[ {\begin{array}{*{20}{c}}
1&{1005} \\
0&1
\end{array}} \right]$
$\left[ {\begin{array}{*{20}{c}}
1&{999} \\
0&1
\end{array}} \right]$
Solution
$\prod\limits_{k = 1}^{36} {\left[ {\begin{array}{*{20}{c}}
1&{3k + \frac{1}{3}}\\
0&1
\end{array}} \right]} $
$ = \left[ {\begin{array}{*{20}{c}}
1&{3 + \frac{1}{3}}\\
0&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&{6 + \frac{1}{3}}\\
0&1
\end{array}} \right]…….\left[ {\begin{array}{*{20}{c}}
1&{108 + \frac{1}{3}}\\
0&1
\end{array}} \right]$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
1&{\left( {3 + 6 + 9 + …. + 108} \right) + 12}\\
0&1
\end{array}} \right]$
$ = \left[ {\begin{array}{*{20}{c}}
1&{2010}\\
0&1
\end{array}} \right]$